
Cable Tension
 Optimization 

tension in the cable. If there is no change in axial force, the 
cable has not deformed.

A simple procedure that has been carried out by engineers 
by hand has been to start the cables with minimal jacking 
force, solve for the axial forces in the cables at the end of 
construction, take those axial forces and use them as the 
cable jacking forces the next time around, and then repeat 
this process until the tensile forces no longer change as a 
result of other loading on the structure. The procedure is 
illustrated in Figure 1.

To see why this might work, take the case of a single cable 
holding up a deck. If the initial cable force is not great 
enough to hold up the deck, the deck will lower causing 
the force in the cable to increase. If the cable is jacked too 
much, the deck will raise and the cable will shorten, causing 
the cable force to decrease. When the deck is held up in 
place, the cable does not deform and there is no change in 
axial force.

We can think of the static analysis as a function f(x), where x 
is the initial cable force (“pretension” in LARSA 4D) and f(x) 
is the cable tension after other loading has been applied 
(the Fx member end force). The goal is to find x such that 
f(x) = x. Actual values for x and f from the first cable of 
an ordinary cable-stayed bridge are shown in Figure 2. The 
solution for this cable in isolation is where f intersects the 
dotted line for y = x. Each iterative step moves x from x to 
f(x).

If there is more than one cable, we can think of f as a 
function from a vector of cable jacking forces x to a vector 
of final cable tension values f(x).

This procedure is automated in LARSA 4D.  Before we begin:

•	 The model should be prepared for a Nonlinear Static analysis.
•	 The model should also be created with joints located at their 

desired deformed location so that the desired outcome is no 
displacement under all of the static loading in the model. 

•	 An analysis should be run once to ensure the analysis options 
are set appropriately. 

•	 An initial guess for cable prestress must be made if it is 
required for the analysis to complete. 

•	 Then select a result case from the Analysis Results Explorer, 
the result case with all static loading applied. 

•	 Also note the ID number of a joint whose displacements are 

A common problem in the analysis of a cable-stayed bridge 
is the determination of initial cable tension forces that — in 
combination with other loading, the construction sequence, 
and time-dependent material effects — gives the structure 
its desired final geometry and internal forces. LARSA 4D 
Bridge Plus provides two solutions to this process. The 
first determines cable tension forces in a model in which 
the structure is constructed in a single step. The second is 
based on the unit-load method and is used for models with 
a construction sequence.

We call these procedures model optimization.  Optimization 
is the term from mathematics of finding a minimum of 
a function. These procedures are used in LARSA 4D to 
minimize deflection.

Iteration Using Final Cable Tension

In a nonlinear structure such as one with cables, one cannot 
solve directly for the set of cable forces at cable installation 
that is needed to achieve a chosen deformed state once 
other loading has been applied. If all of the deformation 
on the structure takes place after the cable is tensioned, 
and the goal is to have the base of the cable stay at its 
undeformed location, then one can make use of the fact 
that the cable jacking force will match exactly with the final 

Figure 1. Flow chart of the method to iterate using final 
cable tension.



checked as a stopping criteria.

To start the tool:
•	 In the LARSA 4D menu go to Tools > Geometry Control > 

Iterative Cable Tension Optimization. The tool performs the 
procedure described in this section over all cable elements 
in the model, in each iteration copying the final axial forces 
in the selected result case back into the prestress column 
in the members spreadsheet. The procedure stops when 
the displacement of the chosen joint reduces to within a 
tolerance given by the user.

In a typical nine-cable cable-stayed bridge model, we have 
found that the process requires only roughly five iterations 
to achieve near-zero displacements. A perfect solution 
may be impossible due to other structural elements in the 
model, and in this case the procedure could be left to adjust 

pretension values indefinitely. The cable pretension values 
for the nine cables in a typical model after each iteration 
are shown in Figure 3. At the first iteration the cables are all 
set to a common initial prestress force.

Iteration Using Unit Loading and a Flexibility Matrix

In a segmental assembly a cable may be installed after its 
segment has already deformed due to dead load. The goal 
here is to achieve zero joint displacement, but because the 
cable is installed in the middle of the construction sequence 
the cable is intended to deform as it brings the joint back up 
to its initial location. Since the cable will deform, the initial 
cable tension will not match final cable tension, the first 
procedure is not applicable in this case.

A different method is required in this case. The “unit load 
method” has been applied in the past to solve this problem. 
In this method, we apply a unit-tug — i.e. one extra unit of 
jacking force — to each cable and observe its effect on each 
of the joints at the bases of the cables (or any other joints 
on the deck). Then we solve for a factor to apply to the tug 
to zero-out the displacements at a joint. Take the case of 
a single cable. At the initial condition, the joint at the base 
of the cable has displaced by 5 meters. Through a static 
analysis we determine that adding 1 kN of force to the cable 
raises the joint by 1 meter. We then conclude that 5 times 
the 1 kN = 5 kN will raise the joint back to its undeformed 
location. If the structure has nonlinear behavior 5 kN may 
not have the effect of 5 times the effect of 1 kN, so the 
process must be iterated until the displacement comes 
within tolerable limits.

This is the application of a procedure used in many other 
fields of applied mathematics and is a generalization 
into multiple dimensions of the Newton-Raphson method 
of finding the solution to f(x) = 0. As opposed to the first 
iterative method described above, f(x) here is a function 
from a vector of cable pretension forces to a vector of joint 
deformations in the elevation axis.

The Newton-Raphson method can be summarized as 
follows: when searching values of x for the one that makes 
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Figure 2. Final cable tension plotted against initial 
cable prestress force; units are kN.
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 Figure 3. Cable pretension values for nine cables after the 
first 55 iterations.
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Figure 4. Illustration of Newton-Raphson 
in one dimension.



f(x) = 0, a good guess is to use the slope of f to predict 
where the function is going. This is shown in Figure 4, and 
formally in Equations 1–2, where f´ denotes the derivative 
of f.

eqn 1.   f´(x) . ∆x = -f(x)

eqn 2.   ∆x  =  f(x)

	        
f´(x)

When there is more than one cable this process must be 
generalized to multiple dimensions, and the iterative step 
is derived as shown in Equations 3–4. The matrix J, called 
the Jacobian matrix, represents the slope of the function 
in each dimension. Jij is the change in displacement at 
joint i due to a one-unit tug on cable j. ∆x is the computed 
additional initial cable tension that is needed and is added 
in at the end of the current iteration.

eqn 3.  J . ∆x = -f(x) 
eqn 4.  ∆x = -J-1 f(x)
eqn 5.  J = [f(x+u1)-f(x)  f(x+u2)-f(x)  f(x+u3)-f(x)  ...] 

J is computed by running a separate static analysis for each 
column of the matrix (i.e. Equation 5). Each analysis applies 
a one-unit tug ui to each cable at the time it is installed, 
within a Staged Construction Analysis already set up by 
the user that might additionally contain dead load, time-
dependent material effects, and other nonlinear behavior. 
For each analysis we record the displacement of the joints at 
the bases of the cables at the end of construction (i.e. at the 
final construction step) and subtract off the corresponding 
displacements without the unit tug. Once J is assembled 
Equation 4 is solved for ∆x, and this additional force is 
added to the initial cable tension for the next iteration of the 
procedure. On the next iteration J is assembled again, and 
the process continues until f(x) = 0.

If you are familiar with the linear algebra behind finite 
element analysis, you may recognize Equation 4 as 
containing a force vector ∆x equaling a stiffness matrix J-1 
multiplied by a displacement vector f(x). J is then a flexibility 
matrix. However, this optimization procedure works equally 
well even if J is not a flexibility matrix.

The cable jacking forces can be applied at different times, 
i.e. at different stages during a construction analysis that 
takes into account time-dependent material properties, 
temporary loading, other construction activities, and 
geometric nonlinearity. The algorithm will find whatever 
pretension force such that the deformations work out at 
the end. Or x might not be cable force at all. In another 
application of optimization to bridge design, take the case 
of a deck assembled segmentally. Due to camber, each 
segment must go in in such a way that after the structure 
deforms the new segment is in its desired location. The 
segment must start off above its desired location, but by 
how much? This application calls for optimization of each 
segment’s initial location, in which case J is assembled 

not through unit-tugs on cables but considering the effect 
of adding one unit to each joint’s initial z-coordinate. The 
procedure is otherwise carried out the same way.

This optimization method is also available in LARSA 4D 
Bridge Plus:
•	 Please note, the method works best when the model is already 

close to the solution. For this reason, it may be necessary to 
use the first method on a simplified model to find initial cable 
tension values before going on. 

•	 As with the first procedure, a Staged Construction Analysis 
should already be successfully run. 

•	 Create a structure group folder, and then create in this folder a 
structure group for each separate cable (which might contain 
multiple cable elements if the cables are broken into pieces). 

•	 Additionally create a structure group containing the joints at 
the bases of the cables.

To start the tool:
•	 In the LARSA 4D menu go to Tools > Geometry Control > 

General Model Optimization. 
•	 Choose Multi-Variable Zero-Finding. 
•	 For the Model Parameter, choose Cable Prestress and select 

the structure group folder for the cables. 
•	 For the Model Target, choose Zero Displacements at Joints in 

a Group and choose the structure group for the base joints. 
•	 Choose the result case for which the joint displacements 

are to be made zero. This is usually the last result case/
construction step in the analysis. 

•	 Finally, set a tolerance for the joint displacements, which is 
the stopping criteria for the iterative process. We have found 
that on relatively simple models with approximately ten 
cables around 15 iterations is required.

Figure 5 shows the cable pretension set after each iteration 
on the nine cables in a time-dependent construction 

analysis of the same example mentioned earlier. At the first 
iteration the cables are all set to a common initial prestress 
force.•
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Figure 5. Cable pretension after each iteration using a 
time-dependent staged construction analysis.


